Kamis, 26 Januari 2012

MACAM – MACAM NEUROTRANSMITTER


Neurotransmiter merupakan zat kimia yang disintesis dalam neuron dan disimpan dalam gelembung sinaptik pada ujung akson. Zat kimia ini dilepaskan dari akson terminal melalui eksositosis dan juga direabsorpsi untuk daur ulang. Neurotransmiter merupakan cara komunikasi antar neuron. Zat-zat kimia ini menyebabkan perubahan permeabilitas sel neuron, sehingga neuron menjadi lebih kurang dapt menyalurkan impuls, tergantung dari neuron dan transmiter tersebut. Contoh-contoh neurotransmiter adalah norepinefrin, acetilkolin, dopamin, serotonin, asam gama aminobutirat (GABA), glisin, dan lain-lain.
1.                  Asetilkolin
Asetilkolin merupakan substansi transmitter yang disintesis diujung presinap dari koenzim asetil A dan kolin dengan menggunakan enzim kolin asetiltransferase. Kemudian substansi ini dibawa ke dalam gelembung spesifiknya. Ketika kemudian gelembung melepaskan asetilkolin ke dalam celah sinap, asetilkolin dengan cepat memecah kembali asetat dan kolin dengan bantuan enzim kolinesterase, yang berikatan dengan retikulum proteoglikan dan mengisi ruang celah sinap. Kemudian gelembung mengalami daur ulang dan kolin juga secara aktif dibawa kembali ke dalam ujung sinap untuk digunakan kembali bagi keperluan sintesis asetilkolin baru.
2.                  Norepinefrin, epinephrine, dan dopamine
Noepinephrine, epinephrine, dan dopamine dikelompokkan dalam cathecolamines. Hidroksilasi tirosin merupakan tahap penentu (rate-limiting step) dalam biosintesis cathecolamin. Disamping itu, enzim tirosin hidroksilase ini dihambat oleh oleh katekol (umpan balik negatif oleh hasil akhirnya).
a.       Dopamin
Merupakan neurotransmiter yang mirip dengan adrenalin dimana mempengaruhi proses otak yang mengontrol gerakan, respon emosional dan kemampuan untuk merasakan kesenangan dan rasa sakit. Dopamin sangat penting untuk mengontrol gerakan keseimbangan. Jika kekurangan dopamin akan menyebabkan berkurangnya kontrol gerakan seperti kasus pada penyakit Parkinson. Jika kekurangan atau masalah dengan aliran dopamine dapat menyebabkan orang kehilangan kemampuan untuk berpikir rasionil, ditunjukkan dalam skizofrenia. dari perut tegmental area yang banyak bagian limbic sistem akan menyebabkan seseorang selalu curiga dan memungkinkan untuk mempunyai kepribadian paranoia. Jika kekurangan Dopamin di bidang mesocortical dari daerah perut tegmental ke neocortex terutama di daerah prefrontal dapat mengurangi salah satu dari memori.
b.                  Norephineprin
Disekresi oleh sebagian besar neuron yang badan sel/somanya terletak pada batang otak dan hipothalamus. Secara khas neuron-neuron penyekresi norephineprin yang terletak di lokus seruleus di dalam pons akan mengirimkan serabut-serabut saraf yang luas di dalam otak dan akan membantu pengaturan seluruh aktivitas dan perasaan, seperti peningkatan kewaspadaan. Pada sebagian daerah ini, norephineprin mungkin mengaktivasi reseptor aksitasi, namun pada yang lebih sempit malahan mengatur reseptor inhibisi. Norephineprin juga sebagian disekresikan oleh sebagian besar neuron post ganglion sistem saraf simpatisdimana ephineprin merangsang beberapa organ tetapi menghambat organ yang lain.
3.                  Glutamate
Glutamate merupakan neurotransmitter yang paling umum di sistem saraf pusat, jumlahnya kira-kira separuh dari semua neurons di otak. Sangat penting dalam hal memori. Kelebihan Glutamate akan membunuh neuron di otak. Terkadang kerusakan otak atau stroke akan mengakibatkan produksi glutamat berlebih akan mengakibatkan kelebihan dan diakhiri dengan banyak sel-sel otak mati daripada yang asli dari trauma. AlS, lebih dikenal sebagai penyakit Lou Gehrig’s, dari hasil produksi berlebihan glutamate. Banyak percaya mungkin juga cukup bertanggung jawab untuk berbagai penyakit pada sistem saraf, dan mencari cara untuk meminimalisir efek.
4.                  Serotonin
Serotonin (5-hydroxytryptamine, atau 5-HT) adalah suatu neurotransmitte rmonoamino yang disintesiskan dalam neuron-neuron serotonergis dalam sistem saraf pusat (CNS) dan sel-sel enterochromaffin dalam saluran pencernaan.
Pada system saraf pusat serotonin memiliki peranan penting sebagai neurotransmitter yang berperan pada proses marah, agresif, temperature tubuh, mood, tidur, human sexuality, selera makan, dan metabolisme, serta rangsang muntah.
Serotonin memiliki aktivitas yang luas pada otak dan variasi genetic pada reseptor serotonin dan transporter serotonin, yang juga memiliki kemampuan untuk reuptake yang jika terganggu akan memiliki dampak pada kelainan neurologist.
Obat-obatan yang mempengaruhi jalur dari pembentukan serotonin biasanya digunakan sebagai terapi pada banyak gangguan psikiatri, selain itu serotonin juga merupakan salah satu dari pusat penelitian pengaruh genetic pada perubahan genetic psikiatri.
Pada beberapa studi yang telah dilakukan dapat dibuktikan bahwa pada beberapa orang dengan gangguan cemas memiliki serotonin transporter yang tidak normal dan efek dari perubahan ini adalah adanya peluang terjadinya depresi jauh lebih besar dibanding orang normal.Dari peneltian terbaru juga didapatkan bahwa serotonin bersama-sama dengan asetilkolin dan norepinefrin akan bertindak sebagai neurotransmitter yang dilepaskan pada ujung-ujung saraf enteric. Kebanyakan nuclei rafe akan mensekresi serotonin yang membantu dalam pengaturan tidur normal. Serotonin juga merupakan salah satu dari beberapa bahan aktif yang akan mengaktifkan proses peradangan, yang akan dimulai dengan vasodilatasi pembuluh darah lokal sampai pada tahap pembengkakan sel jaringan, selain itu serotonin juga memiliki kendali pada aliran darah, kontraksi otot polos, rangsang nyeri, system analgesic, dan peristaltic usus halus.
5.                  GABA
γ-Aminobutyric acid (GABA) adalah neurotransmiter inhibisi utama pada sistem saraf pusat. GABA berperan penting dalam mengatur exitability neuron melalui sistem saraf. Pada manusia, GABA juga bertanggung jawab langsung pada pengaturan tonus otot.
GABA dibentuk dari dekarboksilasi glutamat yang dikatalis oleh glutamate decarboxylase (GAD).GAD umumnya terdapat dalam akhiran saraf. Aktivitas GAD membutuhkan pyridoxal phosphate (PLP) sebagai kofaktor. PLP dibentuk dari vitamin B6 (pyridoxine, pyridoxal, and pyridoxamine) dengan bantuan pyridoxal kinase. Pyridoxal kinase sendiri membutuhkan zinc untuk aktivasi. Kekurangan pyridoxal kinase atau zinc dapat menyebabkan kejang, seperti pada pasien preeklamsi.Reseptor GABA dibagi dalam dua jenis: GABAA dan GABAB. Reseptor GABAA membuka saluran florida dan diantagonis oleh pikrotoksin dan bikukulin, yang keduanya dapat mnimbulkan konvulsi umum.
Reseptor GABAB yang secara selektif dapat diaktifkan oleh obat anti spastik baklofen, tergabung dalam saluran kalium dalam membran pascasinaps. Pada sebagian besar daerah otak IPSP terdiri atas komponen lambat dan cepat. Bukti-bukti menunjukkan bahwa GABA adalah transmiter penghambat yang memperantarai kedua componen tersebut. IPSP cepat dihambat oleh antagonis GABAA, sedangkan IPSP lambat oleh antagonis GABAB. Penelitian imunohistokimia menunjukkan bahwa sebagian besar dari saraf sirkuit local mensintesis GABA. Satu kelompok khusus saraf dari sirkuit local terdapat di tanduk dorsal sumsum tulang belakang juga menghasilkan GABA. Saraf-saraf ini membentuk sinaps aksoaksonik dengan terminal saraf sensoris primer dan bekerja untuk inhibisi presinaps.
Pada vertebrata, GABA berperan dalam inhibisi sinaps pada otak melalui pengikatan terhadap reseptor spesifik transmembran dalammembran plasma pada proses pre dan post sinaps. Pengikatan ini menyebabkan terbukanya saluran ion sehingga ion klorida yang bermuatan negatif masuk kedalam sel dan ion kalium yang bermuatan positif keluar dari sel. Akibatnya terjadi perubahan potensial transmembran, yang biasanya menyebabkan hiperpolarisasi. Reseptor GABAA merupakan reseptor inotropik yang merupakan saluran ion itu sendiri, sedangkan Reseptor GABAB merupakan reseptor metabotropik yang membuka saluran ion melalui perantara G protein (G protein-coupled reseptor)
Neuron-neuron yang menghasilkanyang menghasilkan GABA disebut neuron GABAergic. Sel medium spiny merupakan salahsatu contoh sel GABAergic
6.               Glisin
Glisin (Gly, G) atau asam aminoetanoat adalah asam amino alami paling sederhana. Rumus kimianya NH2CH2COOH. Glisin merupakan asam amino terkecil dari 20 asam amino yang umum ditemukan dalam protein. Kodonnya adalah GGU, GGC, GGA dan GGG.
Glisin merupakan satu-satunya asam amino yang tidak memiliki isomer optik karena gugus residu yang terikat pada atom karbon alpha adalah atom hidrogen sehingga terjadi simetri. Jadi, tidak ada L-glisin atau D-glisin.
Glisin merupakan asam amino yang mudah menyesuaikan diri dengan berbagai situasi karena strukturnya sederhana. Sebagai contoh, glisin adalah satu-satunya asam amino internal pada heliks kolagen, suatu protein struktural. Pada sejumlah protein penting tertentu, misalnya sitokrom c, mioglobin, dan hemoglobin, glisin selalu berada pada posisi yang sama sepanjang evolusi (terkonservasi). Penggantian glisin dengan asam amino lain akan merusak struktur dan membuat protein tidak berfungsi dengan normal. Secara umum protein tidak banyak pengandung glisina. Perkecualian ialah pada kolagen yang dua per tiga dari keseluruhan asam aminonya adalah glisin.
Glisin bekerja sebagai transmiter inhibisi pada sistem saraf pusat, terutama pada medula spinalis, brainstem, dan retina. Jika reseptor glisin teraktivasi, korida memasuki neuron melalui reseptor inotropik, menyebabkan terjadinya potensial inhibisi post sinaps (Inhibitory postsynaptic potential / IPSP). Strychnine merupakan antagonis reseptor glisin yang kuat, sedangkan bicuculline merupakan antagonis reseptor glisin yang lemah. Glisin merupakan reseptor agonis bagi glutamat reseptor NMDA.
7.                  Aspartat
Asam aspartat (Asp) adalah α-asam amino dengan rumus kimia HO2CCH(NH2)CH2CO2H. Asam aspartat (atau sering disebut aspartat saja, karena terionisasi di dalam sel), merupakan satu dari 20 asam amino penyusun protein.
Asam aspartat bersama dengan asam glutamat bersifat asam dengan pKa dari 4.0. Bagi mamalia aspartat tidaklah esensial. Fungsinya diketahui sebagai pembangkit neurotransmisi di otak dan saraf otot. Diduga, aspartat berperan dalam daya tahan terhadap kelelahan. Senyawa ini juga merupakan produk dari daur urea dan terlibat dalam glukoneogenesis.
Aspartat (basa konjugasi dari asam aspartat) merupakan neurotransmiter yang bersifat eksitasi terhadap sistem saraf pusat. Aspartat merangsang reseptor NMDA (N-metil-D-Aspartat), meskipun tidak sekuat rangsangan glutamat terhadap reseptor tersebut.
Sebagai neurotransmitter, aspartat berperan dalam daya tahan terhadap kelelahan. Tetapi,bukti-bukti yang mendukung gagasan ini kurang kuat.
8.                  Epinefrin
Epinefrin merupakan salah satu hormon yang berperan pada reaksi stres jangka pendek. Epinefrin disekresi oleh kelenjar adrenal saat ada keadaan gawat ataupun berbahaya. Di dalam aliran darah epinefrin dengan cepat menjaga kebutuhan tubuh saat terjadu ketegangan, atau kondisi gawat dengan memberi suplai oksigen dan glukosa lebih pada otak dan otot. Selain itu epinefrin juga meningkatkan denyut jantung, stroke volume, dilatasi dan kontraksi arteriol pada gastrointestinal dan otot skeleton. Epinefrin akan meningkatkan gula darah dengan jalan meningkatkan katabolisme dari glikogen menjadi glukosa di hati dan saat bersamaan menurunkan pembentukan lipid dari sel-sel lemak.
Epinefrin memiliki banyak sekali fungsi di hampir seluruh tubuh, diantaranya dalam mengatur konsentrasi asam lemak, konsentrasi glukosa darah, kontrol aliran darah ginjal, mengatur laju metabolisme, kontraksi otot polos, termogenesis kimia, vasodilatasi, vasokonstriksi, dll.
9.               Asetilkolin
Asetilkolin disekresi oleh neuron-neuron yang terdapat di sebagian besar daerah otak, namun khususnya oleh sel-sel piramid besar korteks motorik, oleh beberapa neuron dalam ganglia basalis, neuron motorik yang menginervasi otot rangka, neuron preganglion sistem saraf otonom,, neuron postganglion sistem saraf simpatik,. Pada sebagian besar contoh di atas asetilkolin memiliki efek eksitasi, namun asetilkolin juga telah diketahui memilik efek inhibisi pada beberapa ujung saraf parasimpatik perifer, misalnya inhibisi jantung oleh nervus vagus.
10.              Nitrat Oksida (NO)
NO adalah substansi molekul kecil yang baru ditemukan. Zat ini terutama timbul di daerah otak yang bertanggung jawab terhadap tingkah laku jangka panjang dan untuk ingatan. Karena itu, transmitter yang baru ditemukan ini dapat menolong kita untuk menjelaskan mengenai tingkah laku dan fungsi ingatan. Oksida nitrat berbeda dengan transmitter molekul lainnya dalam hal mekanisme pembentukan di ujung presinap dan kerjanya di neuron post sinap. Zat ini tidak dibentuk sebelumnya dan disimpan dalam gelembung ujung presinap seperti transmitter lain. Zat ini disintesis hampir segera saat diperlukan dan kemudian berdifusi keluar dari ujung presinap dalam waktu beberapa detik dan tidak dilepaskan dalam paket gelembung-gelembung. Selanjutnya zat ini berdifusi ke dalam neuron post sinap yang paling dekat, selanjutnya di neuron postsinap, zat ini tidak mempengaruhi membran potensial menjadi lebih besar, tetapi sebaliknya mengubah fungsi metabolik intraseluler yang kemudian mempengaruhi eksitabilitas neuron dalam beberapa detik, menit, atau barangkali lebih lama.
11.              Neropeptida
Neuropeptida merupakan kelompok transmitter yang sangat berbeda dan biasanya bekerja lambat dan dalam hal lain sedikit berbeda dengan yang terdapat pada transmitter molekul kecil.
Sekitar 40 jenis peptida diperkirakan memiliki fungsi sebagai neurotransmitter. Daftar peptida ini semakin panjang dengan ditemukannya putative neurotransmitter (diperkirakan memiliki fungsi sebagai neurotransmitter berdasarkan bukti-bukti yang ada tetapi belum dapat dibuktikan secara langsung). Neuropeptida sudah dipelajari sejak lama, namun bukan dalam fungsinya sebagai neurotransmitter, namun fungsinya sebagai substansi hormonal. Peptida ini mula-mula dilepaskan ke dalam aliran darah oleh kelenjar endokrin, kemudian hormon-hormon peptida itu akan menuju ke jaringan-jaringan otak. Dahulu para ahli meyangka bahwa peptida dihasikan dalam kelenjar hormon danmasuk ke dalamjaringan otak, namun saat ini sudah dapat dibuktikan bahwa peptida yang berfungsi sebagai neurotransmitter, dapat disintesa dan dilepaskan oleh neuron di susunan saraf.
Neuropeptida tidak disintesis dalam sitosol pada ujung presinap. Namun demikian, zat ini disintesis sebagai bagian integral dari molekul protein besar oleh ribosom-ribosom dalam badan sel neuron. Molekul protein selanjutnya mula-mula memasuki retikulum endoplasma badan sel dan kemudian ke aparatus golgi, yaitu tempat terjadinya perubahan berikut:
a.          Protein secara enzimatik memecah menjadi fragmen-fragmen yang lebih kecil dan dengan demikian melepaskan neuropeptidanya sendiri atau prekursornya.
b.         Aparatus golgi mengemas neuropeptida menjadi gelembung-gelembung transmitter berukuran kecil yang dilepaskan ke dalam sitoplasma.
c.          Gelembung transmitter ini dibawa ke ujung serabut saraf lewat aliran aksonal dari sitoplasma akson, berkeliling dengan kecepatan lambat hanya beberapa sentimeter per hari.
d.         Akhirnya gelembung ini melepaskan trasnmitternya sebagai respon terhadap potensial aksi dengan cara yang sama seperti untuk transmitter molekul kecil. Namun gelembung diautolisis dan tidak digunakan kembali.

5 komentar: